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The vast majority of animal species do not tolerate severe 
water stress, but the encysted embryo of the brine shrimp Artemia 
franciscana is an exceptionally useful organism to investigate 
physiological mechanisms for enduring extreme environmental 
insults. Any substantial reduction in cellular water poses a threat 
to survival. Nevertheless anhydrobiotic animals survive virtually 
complete loss of cellular water. The mechanisms that govern “life 
without water” (anhydrobiosis) are still not well understood. 
With certain exceptions, it seems that a recurring strategy for 
tolerating severe water loss involves the accumulation of both 
low molecular weight solutes (e.g., trehalose or other polyol) and 
highly hydrophilic macromolecules such as late embryogenesis 
abundant (LEA) proteins, which were first described about 20 
years ago in plant seeds. New studies show that LEA proteins 
found in animals not only protect proteins in the cytosol during 
desiccation, but also confer resistance to water stress, including 
freeze tolerance, to the mitochondrion.

Invertebrates from several different phyla including nematodes, 
rotifers, tardigrades and arthropods are able to survive reversible 
dehydration down to 2% tissue water.1-3 An important animal 
for the study of desiccation tolerance is the encysted embryo of 
the brine shrimp Artemia franciscana. It is among the most stress 
resistant life-history forms in the animal kingdom and might be 
considered an animal extremophile par excellence.4 Brine shrimp 
experience desiccation and temperatures below freezing during 
their normal life cycle. Wholesale removal of cellular water serves 
to aggregate macromolecules, disintegrate subcellular structures 
in non-adapted cells, and suspend metabolism due to removal 
of the water layer around proteins and membranes.5 Freezing at 

rapid cooling rates may cause cellular injury by intracellular ice 
formation, whereas slow rates can cause severe dehydration and 
unfolding of proteins due to increased salt concentrations in the 
unfrozen fraction of the remaining water.6

Lessons from Brine Shrimp

Tolerance to water stress in A. franciscana is most likely 
governed by several different mechanisms that are in place to 
protect cells and tissues during water loss, as well as to repair 
injuries after rehydration. Biochemical strategies in brine shrimp 
include the accumulation of high concentrations of the protective 
solute trehalose,7 increased expression levels of several types of 
small heat shock proteins (e.g., p26, Hsp 21, Hsp 22),8-10 and late 
embryogenesis abundant (LEA) proteins.11 LEA proteins were first 
described in orthodox (non-recalcitrant) seeds where their accu-
mulation correlates with desiccation tolerance of the developing 
plant embryo. These proteins have been proposed to act as a hydra-
tion buffer by sequestering ions and by stabilizing other proteins 
and membranes via direct interaction.12,13 Additional functions 
may include formation of structural networks and stabilization of 
sugar glasses.14,15 In order to survive water stress it is mandatory to 
protect the integrity of the outer plasma membrane and to preserve 
the form and function of intracellular organelles such as the mito-
chondrion. Protection of the mitochondrion during water stress in 
brine shrimp embryos is governed by at least one organelle-specific 
LEA protein (AfrLEA3m), which in all likelihood works synergisti-
cally with the non-reducing sugar trehalose.16

Anhydrobiotic Plants and Animals: The Same on the Inside?

LEA proteins found in plants can be grouped into six super-
families of which Group 3 protein homologues have also been 
found in nematodes and Group 1 and 3 in arthropods. In silicio-
predicted subcellular localizations for plant group 3 LEA proteins 
include cytosol, ER, chloroplast and the mitochondrion.17-19 
Direct experimental evidence for a mitochondria-targeted plant 
Group 3 LEA protein (PsLEAm) was presented by Grelet et al.20 
PsLEAm significantly reduced desiccation injury in mitochondrial 
enzymes and was later shown to protect from membrane fusion 
liposomes that were air-dried and subsequently rehydrated.13 
The recently discovered gene AfrLea3m from A. franciscana16 
encodes a 307 amino acid polypeptide that is highly enriched in 
hydrophilic and charged residues. The mRNA expression levels of 
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AfrLea3m are several fold higher in desiccation tolerant embryos 
than in intolerant larvae. The polypeptide belongs to the family 
of Group 3 LEA proteins and represents the first example of an 
organelle-targeted LEA protein in animals. Biochemical studies to 
elucidate its function are underway, and it remains to be seen if 
AfrLEA3m, similar to the plant homolog, stabilizes both proteins 
and membranes during desiccation. Analogous to plants, the 
finding that LEA proteins in anhydrobiotic animals are targeted 
to different subcellular compartments suggests that similar strat-
egies are employed to enable anhydrobiosis in both kingdoms. 
Therefore, it is quite tempting to speculate that a LEA protein 
targeted to the endoplasmic reticulum still awaits its discovery in 
an anhydrobiotic animal. However, intracellular compartments 
other than the mitochondrion could be stabilized by non-LEA 
proteins such as p26, which can be found in the nucleus of 
encysted brine shrimp embryos.21 Table 1 gives an overview of 
proteins in A. franciscana that serve possible roles in resistance to 
water stress and their subcellular locations.

Future Directions for Biostabilization

We found that mammalian hepatoma cells that express a 
chimeric protein composed of the first 70 N-terminal amino acids 
of AfrLEA3m and green fluorescence protein readily incorporate 
the construct into their mitochondria.16 Recently we confirmed 
this finding for a construct composed of the complete LEA protein 
fused to a blue fluorescence protein (unpublished observations). 
These results demonstrate the highly conserved nature of the 
protein import machinery for mitochondria from mammalian and 
invertebrate cells, and indirectly, of the targeting sequence as well.

If isolated mammalian mitochondria are frozen in the presence 
of trehalose (trehalose present outside but not inside the matrix) 
some functions of the outer membrane are maintained, but pivotal 
bioenergetic functions of the inner membrane are compromised.22 
Rat liver mitochondria that are loaded with trehalose in the matrix 
(i.e., trehalose present on both sides of the inner membrane) show 
significantly higher inner membrane integrity after desiccation 
than those without trehalose loading. Still, irreversibly damaged 
occurs at water contents below 0.2 g water/g solids.23 These result 
demonstrated that to confer complete desiccation tolerance to a 
complex structure such as the mitochondrion takes more than 
optimized loading of trehalose. AfrLEA3m may not be the magic 
bullet in engineering desiccation tolerance. Nevertheless, the 
opportunity to investigate the impact of combining AfrLEA3m 
and trehalose for biostabilization of mitochondria might bring us 
one step closer to the exciting possibility of engineering desiccation 
tolerant mammalian cells and tissues.
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